
Wi-Fi Analysis and Development
of the Wi-Fi Scanning Module

Team Lev Tours
Kyle Savery, Erik Clark, David Robb,

Ariana Clark-Futrell, Alexis Smith

Team Sponsor
Dr. Michael Leverington

Team Mentor
David Failing

Northern Arizona University
April 2021

Overview
This document provides an analysis on the accuracy of our Wi-Fi localization system

using the Engineering building’s Wi-Fi, located on campus at Northern Arizona
University. As well as justifications for several design decisions within our team’s

software.

1

Table of Contents

1 Introduction 2

2 Developing the Wi-Fi Scanning Module 2
2.1 Fingerprinting 2
2.2 How our Software Scans 3
2.3 Rating Calculation 3

3 Wi-Fi Tests and Results 5
3.1 Range of Wi-Fi Localization 6
3.2 Scanning Times 6
3.3 Optimum Scan Quantity for Setup 7

4 Further Investigation and Unperformed Tests 8

5 Conclusion 8

6 Glossary 9

2

1 Introduction
The original concept behind our team's project was to have us navigate a building using Wi-Fi
information and create a Graphical User Interface (GUI). Our team was successfully able to
implement a GUI that allowed users to receive tours around any building with an adequate
to-scale map. However, the final software product does not rely on Wi-Fi to navigate the
building. The main reason for this is that in the given time frame our team was unable to
determine a device's position to within the target range of 2 meters. Moreover, the process of
retrieving nearby Wi-Fi information (known as a Wi-Fi Scan) was much slower than anticipated
which complicated development further. Consequently, our team needed to pivot and focus on
completing, testing, and delivering the GUI. The final product does include a Wi-Fi component,
but in its current state it is just a demonstration of the progress made so far toward giving the
robot a way to navigate with Wi-Fi. This document is meant to give Dr. Leverington and
upcoming teams a complete understanding about what our team investigated, how effective our
Wi-Fi module ended up being, and where future work could be started.

2 Developing the Wi-Fi Scanning Module
A requirement of this project was that the software needed to use a building’s existing Wi-Fi
infrastructure to localize (determine the position of) the running device and navigate from point
to point. Our team was not allowed to use other forms of localization such as GPS or Bluetooth.
As such we began this project by researching how Wi-Fi could be readily used to navigate an
indoor space. Several techniques exist to accomplish this such as Angle of Arrival (AoA), Time
of Flight (ToF), and fingerprinting.

AoA operates by measuring the incoming angles of signals from nearby Access Points (AP’s)
(generally, these are the routers within a building). As well as the known coordinates of those
AP’s to determine the device’s position. However, this technique requires the hardware to
employ multiple antennas which was not the case for our team’s provided laptop, so this
strategy was not investigated further.

For ToF, the time it takes for a signal to travel to and from each AP is used to determine the
current position. Again, this method uses exact positions of AP’s within a space. This was an
issue for our software as the locations of routers within the buildings on campus was
unavailable. Our team realized that going around and collecting this data from scratch was not a
worthwhile direction to take, as this would make setup in new buildings exponentially more time
consuming. So, the technique that our team decided was best suited for our purposes was
fingerprinting.

2.1 Fingerprinting
Fingerprinting relies on a measure of the signal strength from detected AP’s known as the
Relative Signal Strength Indicator (RSSI). RSSI values range from 0 to -100 dBm with 0 being
the strongest possible signal. During the fingerprinting setup process, some quantity of Wi-Fi
scans are taken at some location within a building. This creates an RSSI data set, such that a
single scan performed after the setup process can be compared with each established location’s

3

data set to determine the device’s current location. Now that our team had decided upon how
we wanted to try and navigate a building solely using Wi-Fi, the next step was to figure out how
we could retrieve these RSSI values from within our software.

2.2 How our Software Scans
The provided laptop runs Ubuntu 20.04, so the processes that were investigated for obtaining
RSSI information were focused on operations compatible with Linux machines. We found a
command line call, iwlist, that served this purpose. The command iwlist returns the Media
Access Control (MAC) address (a unique identifier for network interfaces) and an RSSI value for
each detected AP across each detected network. To be specific, an AP can no longer be
detected by a device once the device moves far enough away from it, so not every AP in a
building will be accessible from every location. Other Linux wireless tools for the command line
our team investigated were iwconfig and iwspy, both of which do not return RSSI information for
all detected AP’s. Another operation that was promising at first was iw dev station dump, which
returned RSSI data for the current connectly AP. We looked into whether this command could
be configured to return all nearby AP’s information, but no procedure was found. As such our
team had to move forward with iwlist.

The iwlist command was the first that our team found, but the reason we continued to research
alternatives was that the scanning operation carried out by iwlist takes a relatively substantial
amount of time. Scans typically last between 3 and 4 seconds (see section 3.2), which would
hinder an autonomous robot from being able to navigate effectively. From this point, our team
realized there may be an issue with attempting to navigate via Wi-Fi (at least in the form we
were able to achieve in the scope of this project). Regardless of this issue, we still needed a
way to compare recent scans with data sets acquired during the fingerprinting setup process in
order to determine the device’s location.

2.3 Rating Calculation
There already exist software products pioneering the field of Wi-Fi localization, but most of them
rely either on expensive hardware, the techniques of AoA or ToF, or highly involved
mathematics. As such our team approached the problem of comparing RSSI data sets with the
mindset that our project is based in academia. That is, we decided to dedicate the time we could
afford to spend on the Wi-Fi scanning module on creating our own method of comparison, rather
than trying to understand and use someone else’s work which may not even perform the way
that we need.

In our system’s implementation, an RSSI data set consists of the minimum, maximum, and
average RSSI value that a location receives from each detected AP over the course of 25 setup
scans. The data set also includes the corresponding MAC address for each AP. As for the
comparison process, each established location is assigned a rating that depicts how similar its
data set is to a recent Wi-Fi scan. The location with the highest rating is selected as the position
that the device is most likely closest to. Our software’s comparison algorithm follows the basic
idea that, for a given location, the closer a sample RSSI value is to the stored average then the

4

more “points” the rating will gain. In our software’s final state, the algorithm we employ is
referred to by us as a penalty assisted comparison. This algorithm works as shown below.

❏ For each location you want to compare a recent scan to, assign a rating of 0 and
calculate the number of “penalties” this location is able to receive before having its rating
reduced as the floor of 10 percent of the number of AP’s for this location’s data set.

❏ For each sample AP in a recent scan, get the sample’s MAC address.

❏ For each AP in the location being currently compared, find the corresponding RSSI data
set to match the sample AP.

❏ Now, using the stored data set:
❏ If the sample RSSI value () is greater than or equal to the minimum𝑐𝑢𝑟𝑟𝑒𝑛𝑡

stored value () and less than the average stored value (), then increase𝑚𝑖𝑛 𝑎𝑣𝑔
this location’s rating by . Unless the(1 − ((𝑎𝑣𝑔 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡)/(𝑎𝑣𝑔 − 𝑚𝑖𝑛))
average is equal to the minimum, then increment by 1.

❏ If the sample RSSI is greater than or equal to the average stored value and less
than or equal to the maximum stored value (), then increase this location’s𝑚𝑎𝑥
rating by . Likewise, if the average(1 − ((𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑎𝑣𝑔)/(𝑚𝑎𝑥 − 𝑎𝑣𝑔))
equals the max, increment by 1.

❏ If the RSSI sample is outside the min and max range, then calculate the amount
of points to deduct from the rating by or(𝑚𝑖𝑛 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡)/(𝑎𝑣𝑔 − 𝑚𝑖𝑛)

, if the current value is less than or greater(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑚𝑎𝑥)/(𝑚𝑎𝑥 − 𝑎𝑣𝑔)
than the range, respectively. Before deducting however, decrement the amount of
allowed penalties. If this value has reached zero, then reduce the rating by the
above amount, otherwise do nothing.

❏ Finally, return the location that received the largest rating.

To summarize, points are awarded to a location’s rating for each RSSI value from a recent scan
that falls within the stored range. Otherwise, it reduces the rating after a certain number of
allowable fails. Though this algorithm utilizes three nested for loops, our team did not bother
redesigning it as the true limiting factor in our Wi-Fi operation is the time required to scan. The
number of locations and AP’s is small enough that it does not noticeably impact the overall time
that it takes to receive a location estimate.

Along with the above procedure, there were other comparison methods that our team
considered. However, these consistently performed slightly worse in terms of how close the
locations defined during setup could be to placed next to each other. That is, the measure of
how accurate these comparisons were (and our Wi-Fi scanning module as a whole) is based on
achieving a success percentage when determining the correct location. This percentage is

5

referred to as the level of accuracy, and the goal for our system to be 95% accurate within 2
meters. Admittedly, our module performs quite poorly with respect to this original target range.
The actual accuracy of our system, along with how it was tested is discussed in the following
sections.

3 Wi-Fi Tests and Results
To determine the final required distance between saved locations to achieve a level of accuracy
of at least 95%, our team conducted the following test which was performed in the Engineering
building on Northern Arizona University’s campus (NAU).

❏ Throughout one floor (as depicted in Figure 3.1), locations were set up via the previously
described fingerprinting process. These locations were placed at intervals of 20, 19,
18, …, 2, 1 yards for a total of 20 tests. Note: the reason our team switched from meters
to yards is that the tiles on the floor of the engineering building are exactly 1 foot across.
For each of these tests, the tester would walk around until a sample size of 250 location
estimates was reached. To reach this, at each saved location they would stop, perform a
Wi-Fi scan, and mark down if the result was correct or not. The results for these tests are
shown in Figure 3.2.

To supplement the above final testing process, we also tested the behavior of scan times in
different buildings as well as the optimum quantity of scans to perform when setting up a
location’s RSSI data set.

Figure 3.1: Path used for testing on the 2nd floor of Engineering

The testing process for the Wi-Fi scanning module was very limited by the amount of time
scanning takes. Our team had to choose the types of tests we wanted to conduct carefully as
the majority of our time and effort had been focused on completing the main part of our
software, the GUI.

6

3.1 Range of Wi-Fi Localization

Figure 3.2: How distance between locations affects accuracy

Clearly, our software is incredibly inaccurate when the saved locations are less than than the
target goal of 2 meters (~2.19 yds) apart. And it is not until approximately 12 yards (~10.9m)
that our system is able to reliably achieve 95% accuracy.

3.2 Scanning Times
These tests were conducted with a sample size of 300 in each building, and while the scans
were executing the tester walked nearly everywhere in each building. The ‘Avg Networks’ and
‘Avg AP’s’ indicate the average number of networks and AP’s detected across all scans.

Building Name Avg Networks Avg AP’s Avg of Scan
Time (Sec)

Std Dev of
Scan Time

(Sec)

Engineering 15 71 3.34 0.31

Cline Library 23 83 4.12 0.53

Nursing 8 62 2.87 0.25

Social and
Behavioral
Sciences

12 65 3.13 0.34

Adel
Mathematics

6 57 2.56 0.29

Figure 3.3: Average scan times through 5 different buildings at NAU

7

The table above depicts how the average amount of scan time differs between buildings, but
more importantly it offers some insight into why scanning times behave the way they do.
Specifically, how the quantity of networks and AP’s effect scan time. It is worth noting that
scanning the AP that a device is currently connected to takes a matter of milliseconds. Using
the command brought up in section 2.2, iw dev station dump, the current AP’s RSSI signal is
consistently returned in less than 10 ms. To reiterate however, this function does not scan all
nearby AP’s. The command iwlist takes so long because the actual process of switching to look
at a non-connected AP or network is where the vast majority of time is spent. And as
demonstrated in the table, it appears that switching to look at AP’s on a different network takes
longer than switching to an AP on the device’s currently connected network.

3.3 Optimum Scan Quantity for Setup

Figure 3.4: Number of setup scans and its effect on accuracy

In section 2.3, it was stated that 25 scans is the amount of Wi-Fi scans that should be
performed when fingerprinting a location. To reach this number, our team took locations that
were 12 yards apart and tested how the level of accuracy, with respect to 95%, was affected by
changing the amount of setup scans to the set {5, 10, … , 35, 40}. So for the sample of 10 setup
scans, the new level of accuracy was 95 - 18 = 77%. During the original testing from section 3.1
to arrive at the 12 yard distance minimum, all locations were set up with 40 scans. This number
was chosen somewhat arbitrarily, but turned out to be a pretty decent guess as to how many
scans we would need. The reason we chose 40 is that we wanted to get a sufficiently accurate
representation of a location's RSSI ranges, while doing it in the least amount of time. Keep in
mind that this system is supposed to be feasible and going around to each location to scan for a
few hours at a time was certainly out of the question. The purpose behind these tests for
optimum scan time was to discover if there was a quantity of setup scans such that any more

8

scans and the level of accuracy would not significantly improve or any less and the accuracy
began to suffer. This value turned out to be approximately 25 scans.

4 Further Investigation and Unperformed Tests
The following are several tests that our team wanted to conduct, but were forced to abandon
due to either time constraints or insufficient tools.

❏ Do RSSI data sets drift over time? That is, will they still be usable after a few days/weeks
or do these areas need to be re-fingerprinted frequently to maintain the system’s level of
accuracy.

❏ Does repeatedly scanning nearby Wi-Fi information have any impact on accuracy? Since
this concept is meant to be integrated with the robot which (hopefully) will be operating
for hours or entire days at a time, it may be worth investigating if constant calls to iwlist
affect the level of accuracy, if at all.

❏ Does only using access points on a single network (particularly NAU’s main network)
improve accuracy, reduce scan time, or both? As mentioned previously, iwlist grabs
RSSI information from all available sources. There is no way to filter the output to include
only a single network. In terms of parsing the iwlist return value, we can specify which
networks we want to see, but iwlist will still scan all nearby networks and AP’s so scan
time remains unaffected.

The first of these questions is likely the most important one that future teams will need to
answer if they continue down the path of using RSSI. If the data sets do become obsolete after
a short period of time the only solution that our team can come up with is the robot will need to
dynamically update its data sets as it moves around the building.

5 Conclusion
The purpose of the Wi-Fi scanning module was to give our software, and eventually the robot, a
way to determine its position within a building using only the existing Access Points (AP’s).
Originally, this position was meant to be 95 percent accurate within a target range of 2 meters
(~2.19 yds). However, after plenty of complications our actual required distance to hit a 95
percent level of accuracy is about 12 yards, which is closer to about 11 meters. Truthfully, a lot
more work needs to be done if the robot is to be capable of navigation via Wi-Fi. That work may
involve artificial intelligence and/or more advanced hardware, but whatever the solution there
needs to be some pretty fundamental changes to the Wi-Fi localization system our team
developed. But again this is academia, where these types of complications exist to offer future
capstone teams and students plenty of room to research, learn, or even create new
technologies.

9

6 Glossary
Access Point (AP). A hardware device that allows users to connect to a wired network,
generally via Wi-Fi.

Device. For our project, the device we used was a laptop provided to us by Dr. Leverington.
However, in this context a device refers to the physical piece of hardware that our software is
running on.

Fingerprinting. A technique in Wi-Fi localization that is useful for estimating position. A location
within a building is “fingerprinted” when some number of Wi-Fi setup scans are taken at that
location in order to build up a data set that describes the ranges of RSSI values for each
detected AP. Once a building is fingerprinted, then a single scan can be compared to each
fingerprinted location and the data set that it is most similar to is chosen as the closest location.

Graphical User Interface (GUI). A type of user interface that allows the user to interact with the
software visually by using graphical icons instead of relying only on text based input.

Localization. The process of using some set of information (in our software’s case, RSSI
values) to determine something’s position in 3-dimensional space.

Location Rating. The rating of a location in the context of our software is how close of a match
the location is to a recent Wi-Fi scan. The higher the rating of a location, the greater the
probability of our system choosing this location as a position estimate.

Media Access Control (MAC) address. A unique identifier that is given to a network interface.
This is used to keep track of every AP within a building.

Relative Signal Strength Indicator (RSSI). A measurement of the strength in a received radio
signal. These values range from 0 to -100 dBm with 0 being the strongest signal.

Wi-Fi Scan. The process of getting the current RSSI values for each detected AP near the
user’s device. A typical scan using our system takes between 3 and 4 seconds.

